Homework 1

1. Upper-bound on Entropy. (20 points) Let $\Omega=\{1,2, \ldots, N\}$. Suppose \mathbb{X} is a random variable over the sample space Ω. For shorthand, let us use $p_{i}=\mathbb{P}[\mathbb{X}=i]$, for each $i \in \Omega$. The entropy of the random variable \mathbb{X} is defined to be the following function.

$$
H(\mathbb{X}):=\sum_{i \in \Omega}-p_{i} \ln p_{i}
$$

Use Jensen's inequality on the function $f(x)=\ln x$ to prove the following inequality.

$$
H(\mathbb{X}) \leqslant \ln N
$$

Furthermore, equality holds if and only if we have $p_{1}=p_{2}=\cdots=p_{N}$.
Solution.
2. Log-sum Inequality. (20 points) Let $\left\{a_{1}, \ldots, a_{N}\right\}$ and $\left\{b_{1}, \ldots, b_{N}\right\}$ be two sets of positive real numbers. Use Jensen's inequality to prove the following inequality

$$
\sum_{i=1}^{N} a_{i} \ln \frac{a_{i}}{b_{i}} \geqslant A \ln \frac{A}{B},
$$

where $A=\sum_{i=1}^{N} a_{i}$ and $B=\sum_{i=1}^{N} b_{i}$. Furthermore, equality holds if and only if a_{i} / b_{i} is identical for all $i \in\{1, \ldots, N\}$.

Solution.

3. Approximating Square-root. (20 points) Our objective is to find a (meaningful and tight) upper-bound for $f(x)=(1-x)^{1 / 2}$ using a quadratic function of the form

$$
g(x)=1-\alpha x-\beta x^{2}
$$

Use the Lagrange form of the Taylor's remainder theorem on $f(x)$ around $x=0$ to obtain the function $g(x)$.
Solution.
4. Lower-bounding Logarithm Function. (20 points) By Taylor's Theorem we have seen that the following upper-bound is true.

$$
\begin{aligned}
& \text { For all } \varepsilon \in[0,1] \text { and integer } k \geqslant 1 \text {, we have } \\
& \qquad \ln (1-\varepsilon) \leqslant-\varepsilon-\frac{\varepsilon^{2}}{2}-\cdots-\frac{\varepsilon^{k}}{k} \\
& \hline
\end{aligned}
$$

We are interested in obtain a tight lower-bound for $\ln (1-\varepsilon)$. Prove the following lower-bound.
For all $\varepsilon \in[0,1 / 2]$ and integer $k \geqslant 1$, we have

$$
\ln (1-\varepsilon) \geqslant\left(-\varepsilon-\frac{\varepsilon^{2}}{2}-\cdots-\frac{\varepsilon^{k}}{k}\right)-\frac{\varepsilon^{k}}{k}
$$

(For visualization of this bound, follow this link)

Solution.

5. Using Stirling Approximation. (20 points) Suppose we have a coin that outputs heads with probability p and outputs tails with probability $q=1-p$. We toss this coin (independently) n times and record each outcome. Let \mathbb{H} be the random variable representing the number of heads in this experiment. Note that the probability that we get k heads is given by the following expression.

$$
\mathbb{P}[\mathbb{H}=k]=\binom{n}{k} p^{k} q^{n-k}
$$

Assume that $k>p n$, and we shall represent $p^{\prime}:=k / n=(p+\varepsilon)$.
Using the Stirling approximation in the lecture notes, prove the following bound.

$$
\frac{1}{\sqrt{8 n p^{\prime}\left(1-p^{\prime}\right)}} \exp \left(-n \mathrm{D}_{\mathrm{KL}}\left(p^{\prime}, p\right)\right) \leqslant \mathbb{P}[\mathbb{H}=k] \leqslant \frac{1}{\sqrt{2 \pi n p^{\prime}\left(1-p^{\prime}\right)}} \exp \left(-n \mathrm{D}_{\mathrm{KL}}\left(p^{\prime}, p\right)\right)
$$

where $\mathrm{D}_{\mathrm{KL}}(a, b)$ (referred to as the Kullback-Leibler divergence) is defined as

$$
\mathrm{D}_{\mathrm{KL}}(a, b):=a \ln \frac{a}{b}+(1-a) \ln \frac{1-a}{1-b}
$$

Solution.

Collaborators :

